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A new ligand, Cp*CH2PPh2 (Cp* = 1,2,3,4,5-pentamethyl-2,4-

cyclopentadienyl), was prepared, and was used as a ligand for

nickel-catalysed cross-coupling reaction of alkyl halides with

aryl Grignard reagents, which nickel–phosphine complexes had

never made possible.

Phosphine ligands play important roles in organic synthesis, as

clearly demonstrated in transition metal catalysis. Among them,

monophosphine ligands having an additional intramolecular

coordinating site are an important class.1 Recently, mono-

phosphine ligands having a coordinating alkene moiety was

developed and applied to highly enantioselective transformations.2

Here we introduce Cp*CH2PPh2 (1, Cp* = 1,2,3,4,5-pentamethyl-

2,4-cyclopentadienyl), a monophosphine ligand with a pendant

1,3-diene moiety. We envisioned that the 1,3-diene part as well as

the phosphorous atom would coordinate to transition metal and

that 1 would thus serve as a new six-electron donating ligand.

The synthesis of 1 is outlined in Scheme 1.3 The reaction of

Cp*Li with diiodomethane provided iodide 2. Treatment of 2 with

lithium diphenylphosphide in refluxing THF afforded 1 in high

yield. Since 1 is sensitive to oxygen, we converted the ligand to a

phosphine–borane complex and handled it. The phosphine 1 was

regenerated in situ by removing borane with 1,8-diazabicy-

clo[2.2.2]octane (DABCO) prior to use as a ligand.

Cross-coupling reactions of alkyl halides are rather difficult

reactions, compared to those of aryl or alkenyl halides, since

intermediary alkylmetal complexes are prone to undergo b-hydride

elimination.4,5 We expected that the diene moiety of 1 could

advantageously occupy vacant coordination sites necessary for the

b-hydride elimination. We thus chose nickel-catalysed cross-

coupling reaction of 1-bromooctane with phenylmagnesium

bromide as a model reaction (eqn (1), Table 1). Although several

nickel complexes catalyse such a difficult coupling reaction,4b,4c,5

there are no reports on the cross-coupling reaction catalysed by

nickel–phosphine complexes.6

The nickel-catalysed reaction using 1 was indeed successful,

quantitatively yielding octylbenzene (entry 1).7,8 It is worth noting

that we could obtain a mixture of 1 (27 mmol, 54% recovery) and

the oxide of 1 (22 mmol, 43% recovery) after the reaction. The

recovery suggests that a bis(p-allyl)nickel complex which is a

suitable catalyst for similar coupling reactions4b is not generated

from 1 in the reaction mixture.

Other conventional phosphines such as triphenylphosphine,

tricyclohexylphosphine, and tri(tert-butyl)phosphine did not assist

the coupling reaction efficiently (entries 2–4). Use of neopentyldi-

phenylphosphine that is as bulky as 1 failed to afford octylbenzene

(entry 5). It is worth noting that a homologue of 1,

Cp*CH2CH2PPh2 (3), was far less effective (entry 6).

Hexamethylcyclopentadiene (4) is not a suitable ligand by itself
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Scheme 1 Synthesis of Cp*CH2PPh2.

Table 1 Effect of ligands on nickel-catalysed cross-coupling reaction
of 1-bromooctane with phenylmagnesium bromidea

Entry Ligand NMR yieldd (%)

1 1b Quant.
2 PPh3 29
3 P(cC6H11)3 14
4 P(tBu)3 11
5 P(CH2

tBu)Ph2
b 9

6 Cp*CH2CH2PPh2 (3)b 13
7 Cp*Me (4) 4
8 4 + PPh3

c 38
9 none 5
a Reaction conditions are shown in eqn (1). b Generated in situ by
treatment of the relevant phoshphine–borane with DABCO.
c 10 mol% of both 4 and PPh3. d The yields were determined as
follows. After extractive workup and evaporation, bromoform was
added to a crude oil. Comparison of the 1H signals of bromoform
and octylbenzene revealed the NMR yield.
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(entry 7). Interestingly, combined use of 4 and triphenylphosphine

resulted in formation of octylbenzene in moderate yield (entry 8).

Without any ligands, a 5% yield of octylbenzene was obtained

(entry 9).

Diethyl ether is the best solvent. The reactions in toluene, THF,

dioxane, and hexane provided octylbenzene in 88, 81, 65, and 64%

yields, respectively, under the NiCl2(1) catalysis.

Other alkyl halides underwent the nickel-catalysed phenylation

with the aid of 1 (eqn (2), Table 2). The reactions of primary alkyl

bromides provided the corresponding phenylated products in high

yields (entries 1,9 4–9). Typical protective groups such as THP and

1,3-dioxolane survived under the reaction conditions (entries 6, 7),

while carbonyl groups were not tolerant. 8-Bromo-1-octene was

phenylated, leaving the terminal olefinic group untouched (entry

9). Primary alkyl iodide was as reactive as bromide (entry 3). In

contrast, alkyl chloride completely resisted the reaction.

Unfortunately, an attempted cross-coupling reaction of a second-

ary alkyl bromide resulted in an unsatisfactory yield of

cyclohexylbenzene (entry 10).

The cross-coupling reaction is believed to involve a radical

process as justified by the following two experiments. Treatment of

cyclopropylmethyl bromide with p-methoxyphenylmagnesium

bromide furnished p-(3-butenyl)anisole (eqn (3)). No cyclopropane

skeletons were observed in the crude oil. In addition, the reaction

of 6-halo-1-hexene derivative 5 afforded benzyl-substituted pyrro-

lidine 6, in addition to unphenylated pyrrolidine 7 (eqn (4)). Ring-

opening of a cyclopropylmethyl radical and ring-closure of a

5-hexenyl radical are well-known isomerization reactions,10

suggesting the intermediacy of carbon-centered radicals.

Oxidative addition via a single electron transfer process is most

probable.4

ð3Þ

ð4Þ
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